If it's not what You are looking for type in the equation solver your own equation and let us solve it.
g^2-34g+240=24
We move all terms to the left:
g^2-34g+240-(24)=0
We add all the numbers together, and all the variables
g^2-34g+216=0
a = 1; b = -34; c = +216;
Δ = b2-4ac
Δ = -342-4·1·216
Δ = 292
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$g_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$g_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{292}=\sqrt{4*73}=\sqrt{4}*\sqrt{73}=2\sqrt{73}$$g_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-34)-2\sqrt{73}}{2*1}=\frac{34-2\sqrt{73}}{2} $$g_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-34)+2\sqrt{73}}{2*1}=\frac{34+2\sqrt{73}}{2} $
| 4x^2+18x+54=0 | | 7^x2-x-5=1/343 | | 2y+10=y-10 | | -9x-67=-6x+38 | | -129-3x=-12x+51 | | -150+12x=84+3x | | -x-156=75+6x | | 45+x/7=-5 | | -33-14x=42-9x | | 4x-130=-x+40 | | -28+8x=7+7x | | 6x-57=76+13x | | 4x7(x+20)=85 | | -184-12x=-3x+131 | | 5x-36=2x+33 | | 1001-(755+x)=193 | | Y-8=-5/3(x-5) | | -2x+3=-6+9x | | 20x+11=25x-4=60 | | 8-7(4-w)=10w-(3w-) | | 6-(-5f)=46 | | 6x-19=3x+32=60 | | 6x-19=3x+32=70 | | 41+x×1=19 | | x-6=-5x+5 | | 14=5+-3q | | (4+3x)*7=133 | | -q-10-3q=q+10 | | -7u+7=-6u+6+6 | | -3-d=-3d+9 | | 49x+2=51 | | 2-2w=-3w+9 |